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ABSTRACT 
One of the goals of the U.S. Army Ground Robotics Research 
Program is to develop individual and group behaviors that 
allow the robots to contribute to battlefield missions such as 
reconnaissance.  By using simulation tools, we are able to 
develop, debug and test behaviors before porting them to 
actual robotic platforms.  This affords the researchers the 
opportunity to expeditiously evaluate the behaviors in a 
diverse set of environments and to explore variations in 
behavior algorithms without tying up limited robotic resources 
or putting these robotic vehicles at risk.  This report describes 
our efforts to develop a proof-of-principal behavior initiated in 
simulation then ported to a team of surrogate robotic 
platforms.  The issues discovered in porting the algorithm 
from simulation to the robotic platform are discussed.  The 
report concludes with a discussion of possible extensions to 
the basic tool. 
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1. INTRODUCTION 
The primary focus of the U.S. Army Ground Robotics 
Research Program is autonomous mobility.  As unmanned 
ground vehicles (UGVs) become more capable of 
autonomously negotiating complex cross country and urban 
environments, it becomes possible to develop individual and 
group behaviors that will allow the robots to contribute to 
battlefield missions such as reconnaissance. Since 
experimental time on the current robotic vehicles, the 
experimental unmanned ground vehicles (XUV), is divided 
between many organizations, it is essential that we develop a 
simulation tool that will allow us to develop and test behaviors 
in simulation before porting them to the actual vehicle. Other 
benefits of developing behaviors in simulation are the ability 
to expeditiously exercise the behavior in varied environments, 
and the opportunity to make mistakes without catastrophic 
effects on the robot.  In this report, we describe our efforts to 
develop a chemical reconnaissance behavior for a team of 
three XUVs. 
 
Some general background on the chemical reconnaissance 
mission, as outlined in the Scout Platoon field manual, is 
presented as the basis for the robotic behavior algorithm.  The 
One Semi-Automated Forces (OneSAF) simulation tool and 
the modifications that have been made to OneSAF to support 
the behavior development efforts are discussed.  The paper 

includes a discussion of the basic behavior algorithm as well 
as enhancements required to add robustness to the behavior in 
the simulation environment.  The next step was to port the 
behavior algorithm to the robotic platform.   Although the 
ultimate target vehicle for the behavior is the XUV, surrogate 
robots were used to demonstrate the behavior and to facilitate 
experimentation and the evaluation of the behavior.  The 
issues discovered in porting the behavior will be discussed.  
The report concludes with a discussion of potential extensions 
to the basic behavior development tool. 
 
2. BACKGROUND ON THE MISSION 
We use the OneSAF simulation tool to develop autonomous 
behaviors for ground robotic systems.  The scout mission was 
selected as the application to demonstrate the utility of ground 
robotics and to showcase the advances in autonomous 
mobility.  There are many aspects of the overall Scout mission 
including reconnaissance, target acquisition and surveillance 
(RSTA), classification of terrain features and locating 
obstacles such as minefields or regions contaminated by 
nuclear, biological or chemical (NBC) weapons.  As a proof-
of-concept, we focused our initial behavior development 
efforts on the mission to locate and mark a region 
contaminated by an NBC weapon, specifically a persistent 
chemical contamination.  This mission can be accomplished 
with minimal operator intervention and integrated with the 
existing Demo III XUV using currently available 
technologies.   
 
We adapted our behavior from the description of the manned 
chemical reconnaissance mission given in the FM 17-98 Scout 
Manual [1].  This mission, as performed by manned scouts, 
uses existing chemical sensors that alert the user of the 
existence of contamination.  We assume that these sensors can 
be mounted on the XUV and that signals from these sensors 
can be interpreted by the XUV software.  In this work, we 
focus on locating and mapping a persistent contaminating 
agent that has already been released and settled on the surface 
of the terrain.  The tactical use of these agents is similar to the 
use of minefields.  Such agents are used to canalize friendly 
forces; or to deny them access to intersections, likely avenues 
of approach, or other key terrain features.  Figure 1 shows 
graphically how the mission is accomplished. 
 
The mapping portion of the mission is accomplished with 
three vehicles.  The first, designated as the base vehicle, 
establishes the near and far side limits and the base line.  The 
wingmen determine the left and right limits.  The movement 



 

of the three vehicles is conditional, based on several factors 
including positive or negative detections; the vehicle’s 
direction of travel; the reconnaissance direction of travel; the 
base line; and the far side limit.  The left, right, and near side 
limits are defined by the bounding of the vehicles but are not 
considered in the decision process.  The end result is a 
rectangle, formed by the four limit lines, that bounds the 
contamination.  This mission is only intended to provide 
sufficient information to maneuver the main body, not to 
provide a detailed map of the contamination.  The step-by-step 
approach and the hazardous nature of the task both make this a 
desirable mission for a robotic vehicle. 
 

 
Figure 1.  Example of Mapping of Chemical Contamination [1] 

 
3. THE ONESAF SIMULATION TOOL 
 
3.1 BASELINE FEATURES  
OneSAF [2] is an interactive battlefield simulation tool 
developed by the Simulation Training and Instrumentation 
Command (STRICOM) that simulates the behavior of units, 
their vehicles, and their weapon systems to a level of realism 
sufficient for training and combat development.  It provides 
users with the capability to create and control units ranging in 
size from individual combatants and platforms through 
battalions.  The simulation package also includes a 
representation of the physical environment, including terrain, 
diurnal cycle and weather, and its effect on simulated 
activities and behaviors.  
 
OneSAF has many desirable features for developing and 
testing robotic behaviors.  It is an easy-to-use, interactive tool 
that allows users to design test scenarios.  Currently, there are 
several hundred different types of units that can be used in 
these scenarios.  These units range in size from individual 
soldiers to battalions.  The units include both air and ground 
systems and represent both US and foreign systems.  The 
actions of these units can be controlled by the user or, to a 
limited extent, controlled by OneSAF behavior algorithms.  
Users can add new units and behavior algorithms to the base 

systems to support specific projects.  There are many terrain 
databases available for OneSAF.  These terrain databases 
include U.S. Army installations such as Ft. Knox, Ft. Hood 
and the National Training Center as well as parts of Europe 
and Asia.  In addition, commercial packages such as MultiGen 
Creatortm 11 can be used to provide 3-dimensional visualization 
of the terrain databases. 
 
Unfortunately, OneSAF does have limitations as a tool for 
developing and testing robotic behaviors.  These limitations 
can be grouped into two categories – terrain database 
limitations and entity behavior limitations. 
 
Most of the terrain databases that are available for OneSAF 
have elevation posts spaced 30-125 meters apart.  This results 
in very a “smooth” terrain surface that does not accurately 
model the terrain encountered by a small vehicle.  Many 
terrain features, such as trees, wooded areas, roads, rivers, and 
buildings are “layered” on top of the elevation grid as linear or 
polygonal abstract features.  Although these abstract features 
do affect the activities of the simulated entities, they are not 
directly sensed by the sensory equipment attached to entities.  
It is difficult to examine the robustness of behaviors that 
involve autonomous mobility without including a model of 
how the driving sensors acquire information about the 
environment.  Also, most OneSAF terrain databases do not 
contain ditches, holes, rocks, boulders, and other small 
obstructions that present significant obstacles for ground 
robots. 
 
The current OneSAF mobility behavior algorithms assume a 
competent human driver is controlling the system.  This driver 
model “perceives” and responds appropriately to obstacles in 
the terrain, updating the vehicle position and velocity several 
times a second. In fact, since the driver is assumed to be 
competent, most OneSAF terrain databases do not contain 
small mobility obstacles to stimulate the driving algorithms.  
We cannot assume a competent driver for the Demo III 
program since a major issue is the robustness of its driving 
algorithms.  We have not fully investigated other behavior 
algorithms in OneSAF, however, many of the algorithms are 
trying to simulate human actions so they may use information 
and intelligence not yet available to ground robots.  In general, 
we would like to replace the OneSAF behavior algorithms 
with a better representation of robotic behavior.  
 
3.2 ARL Extensions 
We have extended the basic features of the OneSAF 
simulation code to better represent ground robotic features.  
Our work can be divided into two categories – terrain 
modifications and robot-specific modifications.  The terrain 
modifications overcome some of the limitations of the terrain 
databases described in the previous section, providing the 
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simulated robot with a rich environment containing both large 
and small obstructions that need to be sensed and incorporated 
into its mobility plan.  There are many different approaches to 
modifying the OneSAF terrain databases to support mobility 
analysis for robotic vehicles, a detailed discussion of these 
modifications is found in Fields [7].  In this section, we briefly 
describe the mobility obstacle editor that we used in analyzing 
and developing this behavior algorithm. 
 
The mobility obstacle editor allows researchers to introduce 
two types of obstacles, positive obstacles, representing rocks, 
bushes, and other obstacles above the ground plane, and 
negative obstacles, representing ditches, culverts, and other 
holes in the ground plane to an existing terrain database to 
stimulate the perception and planning processes on the robotic 
vehicle.  .  Using the editor shown in Figure 2, researchers can 
control the size, shape, number, and distribution of these 
obstacles.  Positive obstacles are show as dark gray, negative 
obstacles are shown in light gray.  By setting the detectability 
and average detection distance parameters in the editor 
window, the researchers control the detection of the obstacles.   
Using the obstacle editor several times results in the 
heterogeneous group of obstacles such as the distribution 
shown in Figure 2.  All the information for the obstacles is 
saved so that the distribution can be duplicated in subsequent 
simulations. 
 

 
Figure 2.  The Obstacle Editor. 

 
In this research, we needed a method to contaminate a region 
on the simulated battlefield.  By designing an editor similar to 
the obstacle editor, we can place contaminated regions on the 
battlefield.  A contamination is shown in Figure 4.  The 
parameters shown in the editor window determine the size, 
shape, and location of the region.  On the map, the 
contaminated area is indicated by the gray polygon.  Again, 

the parameter settings can be saved for use in other 
simulations and the editor can be used multiple times.  In this 
research, we use both the obstacle and contaminate editors to 
test and debug the chemical reconnaissance behavior. 
 

 
Figure 3.  A OneSAF Simulation Display Showing the World 

Model Information for an Unmanned Ground Vehicle 
 
In addition to the obstacle and contaminate editors, we 
developed algorithms of robotic driving perception and 
robotic mobility which have been documented previously [8].  
These algorithms model the perception and planning processes 
of the robot.  The perception algorithms are “aware” of the 
mobility obstacles previously discussed.  At each time step, 
the robot constructs a world model showing detected obstacles 
and features within a 50 m radius of the robot.  The detection 
of a specific obstacle is a random variable whose probability 
distribution function is specified by the detectability 
parameters.  Figure 3 shows a world model superimposed on 
the terrain map.  Polygons outlined in light gray have been 
detected; the remaining polygons are out of the range of the 
driving sensor. 
 
4. ALGORITHM DESCRIPTION 
In this section, we describe the basic algorithm for a OneSAF 
robotic team to locate and map a contaminated region on the 
ground.  There are some differences between the robotic 
mission and the manned scout mission.  Our simulation begins 
with the three-vehicle section that is normally organized after 
initial detection.  This eliminates the need to model the entire 
platoon and simplifies the process of reorganizing the platoon 
once chemical contamination is detected.  Later, we can 
extend our basic behavior to include a platoon of vehicles 
participating in the mission.  We also did not require the 
robots to use a bounding overwatch movement technique.  
Bounding overwatch can be added later without changing the 
underlying mapping behavior. 
 



 

We have broken the mapping algorithm into five distinct 
phases: (1) Locating the Area, (2) Regrouping, (3) 
Establishing the Baseline, (4) Mapping the Region, and (5) 
Completing the Mission.  Each phase represents a distinct 
behavior involving one or more of the robots.  For now, we 
assume that transition between the phases is instantaneous – in 
reality, the transition times depend on the speed and reliability 
of the robots’ communication systems. 
 
4.1 Phase I:  Locating the Area 
In this phase the robots must find the contaminated region.  
We assume that the soldier/operator has intelligence 
information giving an approximate location of the 
contaminated area.  From this information, the operator 
specifies an initial rally point that forces the robots to cross the 
suspected area.  Figure 4 shows an example map – the 
suspected area is a large circular region shaded gray, the 
actual contaminated region is darker irregularly shaped 
polygon shaded.  Keep in mind that the robot and the operator  
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Figure 4.  A Battlefield Map Showing Region of Suspected 

Contamination (gray) and Actual Contamination (green) 
 
don’t know the location of the contamination a priori.  Just as 
on the battlefield, it is possible for the operator to select a 
search path that misses the contamination.  In this case the 
operator picked a rally point that forced the robots to travel 
through the actual contamination.  During this phase, the 
robots move toward the rally point along parallel paths.  The 
spacing between the robots can be specified by the operator.  
This phase ends when one of the robots makes contact with 
the contaminated region or all the robots reach the rally point.  
The nuclear, biological, chemical (NBC) sensor model 
assumes perfect instantaneous detection so that any contact 
with the contaminated region will result in a detection.  Unlike 
the NBC sensor described in Section 2, this sensor samples the 
environment continuously.  If all the robots reach the rally 
point, it is up to the operator to re-evaluate the mission.  He 
may choose to send the robots through the region again, 
continue the search to a new rally point or he may choose to 
abort the mission. 

 
4.2 Phase II:  Regrouping 
Once the robot team makes contact with the contaminated 
area, the team reorganizes itself to efficiently map the region.  
The robot which made the initial contact is designated as the 
base robot, the other two vehicles are designated as the left 
wingman and the right wingman.  In the current algorithm, the 
left and right wingman positions as assigned arbitrarily.  With 
future improvements, it will be possible to use information 
about the relative positions of the robots to make these 
assignments. In this phase, the base vehicle is stationary.  
During the second phase, the left and right wingmen prepare 
for the remainder of the mapping mission by repositioning 
themselves at a rendezvous point 50 meters behind the current 
position of the base vehicle.  (Note: This differs slightly from 
the task outlined in the field manual.)  Figure 5 shows a robot 
team positioning themselves in the regrouping phase.  
 

 
Figure 5.  Phase II. The Regrouping Phase 

 
4.3 Phase III: Establishing the Baseline 
In the third phase of the mapping mission, the base robot 
needs to determine the extent of the contaminated region.  It 
travels through the contaminated region towards the rally 
point to determine the extent of the contaminated region.  As a 
guide to the two wingman, the base robot determines a far side 
limit 200m beyond the last positive detection, which is 
perpendicular to the baseline at its current position.  Figure 6 
shows a robot team at the completion of the third phase and 
the Far Side Boundary line. 
 
4.4 Phase IV:  Mapping the Region 
The left and right wingmen map the contaminated region in 
the fourth phase of the mission.  Before they start, the 
wingmen know, from communications with the base robot, the 
location and direction of the baseline and the location of the 
far side limit.  The left wingman will map the region in a 
clockwise direction and the right wingman will map the region 
in a counter-clockwise direction. 
 



 

To map the contaminated region, the robots execute a series of 
FIND and REPOSITION steps.  In the FIND step, the goal is 
to find the contamination.  Normally in this step, the robot 
drives in a direction parallel to the baseline until it finds 
contamination.  In the REPOSITION step, the goal is to move 
200m from the contaminated region then set up for the next 
FIND step. 
 

 
Figure 6. Phase III.  Establishing the Baseline and Far Side Boundary 
 
At each positive detection the algorithm must determine the 
appropriate action.  The REPOSITION transition results in a 
900 turn in a direction that is dependent on the vehicle, left or 
right wingman.  Transitions from FIND-to-REPOSITION and 
REPOSITION to FIND is all that is required to map a convex 
shape as shown in Figure 7.   
 

 
Figure 7.  Phase IV. Establishing the Left and Right Side Boundary 
 
In reality, the shape of the contaminated region depends on the 
prevailing winds, the shape of the terrain, the density and type 
of features on the terrain surface, as well as the delivery 
system for the contaminant.  A realistic contaminated area 
might contain concavities, holes, or even disconnected sub-
regions.  No algorithm can be designed to cover every 

contingency, but defining few additional transitions greatly 
enhances the performance of the algorithm.  
 

 
Figure 8.  Mapping a Concave Polygon 

 
In Figure 8, two paths are shown for the left wingman.  The 
path designated by F1-4 and R1-3 is the result of the simple 
approach outlined above.  The robot must travel 200m in a 
REPOSITION mode.  This puts the robot in the middle of the 
contamination at the end of R2.  At this point it executes a 
FIND, F3, turning parallel to the baseline and immediate 
detection results in a change of state to R3 which gets the 
robot out of the contamination, but failing to map a large 
portion of the contamination.  The path outlined by F1, R1, 
F2, R2 and then r3-5 and f3-6 results in mapping the entire 
area and can be accomplished with only a few added 
decisions.  Adding two additional transitions, FIND-to-FIND, 
and REPOSITION-to-REPOSITION, allows mapping of an 
arbitrary polygon.  In the new path the robot transitions from 
R2 to r3 immediately on a positive detection.  The FIND-to-
FIND transition is required as shown for f5.  Continuing along 
f5 would never accomplish the mission, thus the distance and 
the direction traveled can be used to trigger a FIND-to-FIND 
transition. 
 

 
Figure 9.  Adjusting Far Side Boundary 

 



 

4.5 Phase V:  Completing the Mission 
In the final phase of the mission, the wingmen rejoin the base 
robot.  Figure 9 illustrates another situation that can arise.  In 
this case, the concavity is on the far side and the base robot 
incorrectly identifies the far side boundary.  As the wingmen 
attempt to rendezvous with the base robot, they contact the 
contaminated region.  In the extended algorithm, this 
information is passed to the base robot.  The base robot travels 
along the baseline until it can establish a new far side 
boundary.  The wingmen resume the mapping phase, using the 
new far side boundary as an exit criteria.  Presumably, once 
the robot team has reassembled, they would perform 
decontamination procedures and prepare for any further 
missions from the operator. 
 
 
5. Adding Robustness 
In this section, we describe our efforts to make the mapping 
algorithm more robust.  We concentrate on two problems –the 
loss of one or more robots, and performing the mission in 
complex terrain.   
 
5.1 Loss of One or More Robots 
The algorithm as presented in the previous sections requires 
three robots to map a contaminated region.  What if some of 
the robots sustain ballistic damage or break down?  Can the 
mission continue?  The mission can continue provided there is 
a way to monitor the progress and health of the robots. 
 
Extending the current algorithm so that it automatically adapts 
to the loss of one or more robots requires the mapping 
behavior to “monitor” the status of the robots, and some 
adaptation to the mapping phase.  Monitoring the status of the 
robots requires some simple communication between the 
robots and a central control unit – the robots periodically 
report their position and status.  The robots also report the 
location of contaminated points, as they encounter these  
points.  If a robot fails to report (or reports that it is damaged), 
it is assumed to be damaged and unavailable for the remainder 
of the mission.  Adjusting the mapping phase involves fixing 
the length of the FIND step and using a new exit criteria to 
end the mapping phase.  As an example, consider two cases – 
the loss of a single robot in the Phase I. and the loss of two 
robots in Phase I.  These two examples can be generalized to 
cover the loss of robots at any time in the mission. 
 
Consider the loss of a single robot in the Phase I.  At this point 
in the mission, all the robots are looking for the contaminated 
area- losing a single robot will not significantly change this 
phase of the mission.  However, once the initial contaminated 
point has been discovered, the robots must reorganize 
themselves to map the region (Phase II).  In the reduced robot 
team algorithm, we eliminate the role of the base robot and 
proceed directly to Phase IV, the mapping phase.  This leaves 
the two remaining robots to map the outer edge of the 
contaminated region without prior knowledge of the location 

of the far side boundary normally determined by the base 
robot in Phase III.  In the reduced robot team algorithm, the 
maximum length of the FIND step is a fixed length, forcing 
the robots to continue probing the area until they are within a 
fixed distance of each other.  Figure 10 shows a comparison 
between a 3-robot team mapping a contaminated area using 
the original algorithm and a 2-robot team mapping the region 
with the adjusted algorithm.  In this illustration, the algorithms 
perform similarly on the left side of the area.  On the right 
side, the reduced robot team algorithm must “map” the area to 
determine the far side boundary.  Also shown in Figure 10 is 
the procedure for a single robot to perform the mission if two 
vehicles are lost.  
 

 
(a)  

 
 (b) 

                                  
(c) 

Figure 10.  Mapping the Contaminated Area with: (a) 3-Robot Team, 
(b) 2-Robot Team, (c) 1-Robot Team 
 



 

 
5.3 Performing the Mission in Complex Terrain 
In this section, we limit our discussion of complex terrain to 
terrain surfaces containing a significant number of mobility 
obstacles that force the robots to deviate from their planned 
course.  
 
In some ways, performing the mission in complex terrain is 
similar to performing the mission with a reduced robotic team.  
Complex terrain can degrade the mobility of one or more of 
the robots to such an extent that these robots are “lost” to the 
mission.  In the previous discussion, the mapping behavior 
monitored the status of the three robots as they performed the 
mission.  Adapting the mission to complex terrain requires the 
behavior to monitor the progress of the robots, as well their 
status.  Progress measures the change in the distance between 
the robot and its current goal for a given time period. 
 
The goals themselves are a function of the phase of the 
mission and the robot’s particular assignment.  In the first 
phase, progress measures the change in distance between the 
robots and the rally point.  In Phase II only the wingmen are 
moving, progress for a wingman depends on the distance to 
the rendezvous point.  Recall that the base robot crosses the 
contaminated region in Phase III moving toward the Phase I 
rally point.  We measure the progress of the base robot in 
Phase III by measuring the changes in distance between the 
base robot and the Phase I rally point.  In Phase IV, progress 
depends on the distance between the wingmen and the far side 
limit.  In Phase V, progress depends on the distance between 
the wingmen and the base robot. 
 
In this work, we have extended the algorithm for two cases – 
lack of progress of the base robot in Phase III and a significant 
difference in the progress of the wingmen in Phase IV.  In 
both cases, we will treat lack of progress the same as the loss 
of a robot – it simplifies the algorithms.   
 
 
 
6. Porting the Behavior to a Surrogate Robotic 
Platform 
The next step in this research effort was to port the mapping 
algorithm from the simulation package to a robotic platform. 
Two surrogate robots, ATRV-JrTM from iRobot, Inc., shown in 
Fig. 12, were selected to demonstrate the mapping behavior on 
actual robotic platforms.  The robots are four wheeled, skid-
steered platforms that can be used indoors and outdoors. The 
ATRV-Jr’s sensors include visible spectrum cameras, 
ultrasonic range sensor array, GPS, an inertial measurement 
unit, a compass and a tilt sensor.  To simplify the hardware 
and experimental requirements, the cameras were used as 
surrogate chemical sensors, and yellow plywood disks were 
used to create contaminated regions.  This allowed us to focus 
on the algorithm and not be distracted by the integration of 
sensors and the use of chemical simulants.  

 
Since there were only two robotic vehicles available, we 
demonstrated the reduced robot team algorithm discussed in 
Section 4.2  (i.e. we assume that the base robot was lost and 
that the two remaining robots assume the roles of the left and 
right wingman). Adding the base vehicle would have 
simplified the mapping process, giving the wing vehicles a 
baseline and an initial far side limit.   
 
Our experimental setup consisted of the two ATRV-Jr. robots, 
an operator, and a laptop computer that served as the operator 
control station.  Computer code for the robots and the laptop 
was written for the Red Hattm 2  6.2 operating system and used 
the Mobilitytm 3 C/CORBA libraries provided by iRobot.  A 
wireless Ethernet connected the robots and the operator’s 
control station. 
 
Although the basic chemical reconnaissance behavior is the 
same for both the real and simulated robots, there are 
differences in the computer programs controlling each robot.  
First, even though the intent of the battlefield simulation tool 
is to model the real world, real and simulated robots interact 
differently with their respective environments.  Service 
programs such as movement, communication, and sensing 
need to be written specifically for each environment.  The 
actual behavior program depends on the available 
programming environment.  In OneSAF, behaviors are written 
as a finite state machine that is translated into C code by the 
programming environment.  On the robot, the chemical 
reconnaissance behavior was written directly in C. 
We wanted to demonstrate that the robot team could conduct 
the mapping behavior without significant operator 
involvement.  In our experiments, the operator had two roles – 
send the “start mission” signal to the robots, and act as safety 
officer for the experiment.  Each robot conducted its portion 
of the mission independently.  Communication was minimal.  
The robots reported contact points to the operator’s computer.  
The contact points were used to draw a map on the OCU 
screen so that the operator could compare the shape of the 
mapped region to the shape of the actual region on the ground. 
   
The experiments were successful – the robots were able to 
consistently map the surrogate contaminated region.  We 
demonstrated both the 2-robot team and the single-robot team 
mapping procedure.   The experiments identified some issues 
that are important future behavior development work.  First is 
the importance of modeling system latencies.  In our behavior, 
there were two major sources of latencies – latencies 
associated with detecting the contamination and latencies 
associated with communication.  In the real world, detection is 
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not instantaneous –the robot may actually drive into the 
contamination before it registers a detection.  Communication 
latencies are important to consider for future extensions to this 
work – monitoring the behavior and adjusting the loss of a 
robot depend on reliable communication between the robots 
and the OCU. 
 

 
Figure 11. ATRV-JrTM Robots from iRobot 

 
6. Conclusions 
This research represents a proof of concept – we were able to 
develop a behavior using computer simulation then port it to 
actual robotic platforms.  We chose the chemical 
reconnaissance behavior because it was a potential mission for 
robot scout unit and because it was algorithmic in nature.  We 
developed the basic algorithm using a modified OneSAF 
simulation tool.  Using simulation experiments to iteratively 
test our algorithm, we were able to improve the basic 
algorithm to respond automatically to loss of robots due to 
attrition or terrain conditions.  By using laboratory robots in a 
controlled environment, we were able to focus on the 
development of the behavior without having to implement a 
full autonomous mobility package.  The current 
implementation of the chemical reconnaissance mission on 
these robots does not take advantage of communications 
between robots.  Future efforts in behavior development will 
take advantage of the ability of the robots to communicate 
with each other to more efficiently accomplish tasks.   
 
Developing tactical behaviors in a simulation has many 
benefits.  As discussed in this report, using the enhanced 
OneSAF simulation to represent current UGV capabilities 
facilitates the development of behaviors that can be readily 
transitioned to current platforms.  The simulations can also 
point the way to new technology developments and 
capabilities required to accomplish more complex behaviors.   
 
This research effort demonstrates that, with a realistic 
representation of an unmanned ground vehicle and its 

environment, a computer simulation is a viable tool for 
building tactical behaviors for unmanned ground vehicles.  
The current project focused on a single team behavior that had 
to be designed from scratch using the simulated world to test 
and debug the algorithm.  By structuring our future research 
so that we develop libraries of common skills and behaviors 
first, we will be able to combine them into complex individual 
and group behaviors.  As the library of common skills and 
behavior grows, development and testing time for complex 
behaviors may decrease since each of the common behaviors 
and skills will be well characterized. 
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